Effective Mass and Energy Recovery by Conserved Compact Finite Difference Schemes
نویسندگان
چکیده
منابع مشابه
High Order Compact Finite Difference Schemes for Solving Bratu-Type Equations
In the present study, high order compact finite difference methods is used to solve one-dimensional Bratu-type equations numerically. The convergence analysis of the methods is discussed and it is shown that the theoretical order of the method is consistent with its numerical rate of convergence. The maximum absolute errors in the solution at grid points are calculated and it is shown that the ...
متن کاملConstruction of Compact Finite Difference Schemes by Classic Differential Quadrature
Using classic differential quadrature formulae and uniform grids, this paper systematically constructs a variety of high-order finite difference schemes, and some of these schemes are consistent with the so-called boundary value methods. The derived difference schemes enjoy the same stability and accuracy properties with correspondent differential quadrature methods but have a simpler form of c...
متن کاملNonstandard finite difference schemes for differential equations
In this paper, the reorganization of the denominator of the discrete derivative and nonlocal approximation of nonlinear terms are used in the design of nonstandard finite difference schemes (NSFDs). Numerical examples confirming then efficiency of schemes, for some differential equations are provided. In order to illustrate the accuracy of the new NSFDs, the numerical results are compared with ...
متن کاملCompact Finite Difference Schemes with Spectral-like Resolution
Finite difference schemes providing an improved representation of a range of scales (spectral-like resolution) in the evaluation of first, second, and higher order derivatives are presented and compared with well-known schemes. The schemes may be used on non-uniform meshes and a variety of boundary conditions may be imposed. Schemes are also presented for derivatives at mid-cell locations, for ...
متن کاملNonlinear Compact Finite-Difference Schemes with Semi-Implicit Time Stepping
Atmospheric flows are characterized by a large range of length scales as well as strong gradients. The accurate simulation of such flows requires numerical algorithms with high spectral resolution, as well as the ability to provide nonoscillatory solutions across regions of high gradients. These flows exhibit a large range of time scales as well—the slowest waves propagate at the flow velocity ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Access
سال: 2018
ISSN: 2169-3536
DOI: 10.1109/access.2018.2870254